Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Various deterministic and stochastic epidemic models for directly transmissible diseases, such as influenza, measles, HIV and SARS, have attracted increasing attention from researchers. However the most common models are still based on restrictive assumptions which refrain from accurate description of infectious agent's characteristics and their propagation from individual to individual, in time and space. In this project we relax two important epidemic model hypotheses. The first assumption is known as the "law of mass action" and implies that all individuals in a population are equally likely to acquire the infection. Since some directly transmissible infections require specific kind of contacts to propagate, e.g. sexually transmitted illnesses, the related epidemics are heavily affected by specific population's contact structure. The second hypothesis assumes agent's infectious and latent periods are exponentially distributed. The proposed outcomes of this project are theoretical results for the outbreak evolution and a computer simulation program. The statistical analysis and simulation of the outbreak will lead to more informed decision-making and the reduction of the economical and social impact of infectious illness.
Dr. Mary Thompson
Lilia Leticia Ramirez Ramirez
Infonaut Inc.
Statistics / Actuarial sciences
Life sciences
University of Waterloo
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.