Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreMachine learning has been applied in various fields and shown promising results in recent years. Researchers have found that tuning machine learning models in a proper way can vastly boost the model performance with respect to the specific AI task. However, tuning machine learning models at scale, especially finding the right hyperparameter values, can be difficult and time-consuming. There is therefore great appeal for automatic approaches that can optimize the hyperparameter of any given model. This project aims to provide an end to end automotive hyperparameter search framework that can help people explore better machine learning models
Gennady Pekhimenko
Jiahuang Lin
Layer 6 AI
Computer science
Professional, scientific and technical services
University of Toronto
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.