Generalization in Deep Learning

In recent years, deep learning has led to unprecedented advances in a wide range of applications including natural language processing, reinforcement learning, and speech recognition. Despite the abundance of empirical evidence highlighting the success of neural networks, the theoretical properties of deep learning remain poorly understood and have been a subject of active investigation. One foundational aspect of deep learning that has garnered great intrigue in recent years is the generalization behavior of neural networks, that is, the ability of a neural network to perform on unseen data. Furthermore, understanding better this generalization behavior has significant practical importance as it can provide guidance and intuition on how to design more effective and powerful deep learning algorithms in the future. TO BE CONT’D

Faculty Supervisor:

Sanja Fidler

Student:

Mufan Li

Partner:

Borealis AI

Discipline:

Computer science

Sector:

Information and communications technologies

University:

Program:

Accelerate

Current openings

Find the perfect opportunity to put your academic skills and knowledge into practice!

Find Projects