Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
This project will develop practical workflows, algorithms and programming codes for inferring unknown reservoir properties from distributed temperature and acoustic sensing data. In-situ pressure and flow conditions can be interpreted from downhole fiber signals gathered in real time, which are used to estimate unknown heterogeneous reservoir parameters continuously. Machine learning methods will be incorporated to facilitate the handling of large amount of measured data and computations more efficiently. The project outcomes will help to advance the deployment of fiber-based instrumentation and optimize operations of inflow/outflow control devices for downhole monitoring and production diagnoses of oil and gas wells. One PhD student will be trained.
Juliana Leung
Hossein Izadi
RGL Reservoir Management Inc.
Engineering - chemical / biological
Mining and quarrying
University of Alberta
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.