Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreIn todays Big Data era, scientists and businesses owners strive to find accurate real time insights from a large size of various types of data moving at high speed, which has an effect on the human lifestyle and the enterprises productiveness. Advances in Internet and web technologies allow organizations to gather petabytes of structured or unstructured data from various types of sources on a daily bases, which enables them to derive tremendous insights about their customers, products and services. However, managing and processing the big data in a timely manner demands IT solutions with more agility, adaptability and high performance. Specifically, algorithms should be designed to match customers with the right information, at the right time, and with the right format representation given the customers preferences.
In this project we investigate three aspects of algorithm design and implementation in the context of matching desired information to customers in the Internet big data environment.
1) Design of customer preference model: To match the information which is relevant to the customers, it is imperative to model the customers preferences correctly. The model should accurately reflect the customers preferences on the data content, timing and format of presentation. In the meantime, the model should automatically adjust to customers changes of preferences. It should also allow customers to configure their model preferences.
2) Design of the information database and database updating mechanism: Information needed by the customers can be stored in the service providers database and/or retrieved from other databases and/or webpages on the Internet. To provide customers with relevant information in a timely manner, the database structure has to be agile enough to accommodate unstructured data and to provide the infrastructure for highly efficient data traverse on a large scale. We will design algorithms to efficiently compute the relevance ratio between data points and customers. In addition, the computation results should be updated on a regular basis to reflect the dynamic changes of customer preferences and the data itself.
3) Design of the matching algorithms: We will design algorithms to operate on the NoSQL databases to match information to customers. Due to the large scale of the data and the customer base, algorithmic complexities have to be dealt with in order to ensure the quality and responsiveness of the matching service. We will develop algorithms that operate on the graph representation of the data points. Efforts will be particularly channeled to the design techniques that greatly improve the accuracy and efficiency of the algorithm by exploiting the specific characteristics of the graph structure. Previously accumulated knowledge on graph theory, algorithm design, scheduling and optimization will by leveraged to develop such algorithms.
Chun Wang
Nimisha Sharath
Engineering - computer / electrical
Concordia University
Globalink
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.