Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreReinforcement learning (RL) is a type of machine learning that focuses on allowing a physical or virtual agent to complete sequential decision-making tasks, such as video games. It has had many successes, but can be slow in practice, requiring large amounts of data. This project aims to speed up such learning problems by leveraging information from an existing agent. This existing agent need not be perfect the algorithm developed will leverage information from the existing agent whenever possible and learn to outperform it where it is suboptimal.
Martha White
Zhaodong Wang
Borealis AI
Computer science
Information and communications technologies
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.