Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreIn this study, an advanced frequency scanning method is used to extract the frequency dependent network equivalent (FDNE) impedance characteristic of a power electronic subsystem such as an HVDC transmission system or FACTS device including its controls. This is achieved by simulating it in the time domain on an EMT program, and exposing it to an energy dispersed chirp disturbance which has a broad harmonic spectrum. The impedance (or admittance) of this subsystem at the given operating point can then be determined using a Discrete Fourier Transform. The impedance scan can be in the form of a frequency response plot or can be fitted with a rational transfer function. This method will be used to identify potentially unacceptable resonance or instability modes in the power network of Manitoba Hydro, thereby improving the security of power supply to its customers. Also, the scanning result, coupling with analytical study, will benefit the future planning and controller design in Manitoba Hydro system.
Aniruddha Gole
Yi Qi
Manitoba Hydro
Engineering - computer / electrical
Education
University of Manitoba
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.