Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreResearch on fluid simulation is ongoing at the Multimedia Lab of ÉTS, currently focusing on SPH liquid simulation. Fluid simulation requires lengthy computation times and should allow some artistic control. Parallel computation approaches are promising for reducing the computation times. Examples of such approaches include the works of Zhang et al. [Y Zhang, B Solenthaler, et R Pajarola. August 2008. « Adaptive Sampling and Rendering of Fluids on the GPU ». In Proceedings Symposium on Point-Based Graphics. p. 137146.] and those of Hérault et al. [Alexis Hérault, Giuseppe Bilotta, et Robert A. Dalrymple. 2010. « SPH on GPU with CUDA ». Journal of Hydraulic Research, vol. 48, n ? sup1, p. 7479.]. With respect to artistic control, the simulation should allow artists to force the liquid to achieve some key poses such as what can be done for gases [Michael B. Nielsen, Brian B. Christensen, Nafees Bin Zafar, Doug Roble, and Ken Museth. 2009. Guiding of smoke animations through variational coupling of simulations at different resolutions. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’09), pp 217-226.]. It should also allow the artists to efficiently texture the surface of the fluid. The paper by Bojsen-Hansen et al. [Morten Bojsen-Hansen, Hao Li, and Chris Wojtan. 2012. Tracking surfaces with evolving topology. ACM Trans. Graph. 31, 4, Article 53 (July 2012)] is an example of work that tries to address the problem of texturing the surface of liquids.
Eric Paquette
QINZHU XU
Mokko Studio
Engineering - computer / electrical
Globalink
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.