Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreHighly efficient and environmentally clean energy conversion in Polymer Electrolyte Membrane (PEM) Fuel Cells is driven by electrochemical reactions that convert hydrogen and oxygen molecules into water. Water, the product of the overall reaction, is involved in all essential processes in the cell. Water management is, thus, a critical issue for fuel cell operation. It entails controlling water fluxes and maintaining appropriate levels of liquid water saturation in the different cell components. There are strong indications in experiment and modeling that the cathode catalyst layer (CCL) plays a major role in this context. Good operation of the CCL is closely linked to its composition (platinum/support phase, ionomer phase and pore space), porous structure, and wetting properties. The research team, in partnership with the NRC Institute for Fuel Cell Innovation, further analyzed a basic mathematical model of CCL function using the structural details of the layer, water transport from the membrane, liquid water formation by electrochemical reaction in the CCL, water transformation via evaporation and condensation and two-phase flow in liquid and vapor phases. Effects of composition of the CCL, porous structure, wetting properties of pores, operating conditions and boundary conditions at interfaces with membrane and gas diffusion layer were systematically studied. Suggestions for the optimization of water handling capabilities of CCLs and fuel cell power densities emerged, which are currently being tested in experiment.
Dr. Michael Eikerling
Jianfeng Liu
NRC - Institute for Fuel Cell Innovation
Chemistry
Fuel cells
Simon Fraser University
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.