Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreOver the last decade, artificial intelligence has flourished. From a research niche, it has been developed into a versatile tool, seemingly on route to bring automation into every aspect of human life. At the same time, robotics technology has also advanced significantly, and inexpensive multi-robot systems promise to accomplish all those tasks that require both physical parallelism and inherent fault tolerance—such as surveillance and extreme-environment exploration. Decentralized control laws are key to achieve reliability of these systems (as they eliminate the risks posed by single-points-of-failure). Yet, the effective synthesis of (i) machine learning, (ii) multi-robot approaches, and (iii) field robotics is no small task. Previous machine learning and distributed control research rarely ventures beyond computer simulations. GDLS-C and the University of Toronto will investigate how to effectively use multi-agent reinforcement learning in field robotics. GDLS-C’s goal is to improve situational awareness of ground vehicles by using swarms of Unmanned Aerial Vehicles (UAV). Learning decentralized cooperation strategies will improve the resilience of these multi-robot systems—potentially faced with adversarial environments—and, ultimately, the safety of their human operators. Answering our research questions will also enable large collections of robots to learn how to interact with one another—beyond the point human designers can attain.
Angela Schoellig
Jacopo Panerati
General Dynamics Land Systems - Canada
Engineering - other
Information and communications technologies
University of Toronto
Elevate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.