Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn MoreIn this series of collaborative projects, we propose a combination of computational and experimental investigations of the preparation and dielectric properties of new, mixed inorganic materials. We will optimize the fabrication process of standard oxide dielectrics and semiconductors, and mixed derivative materials for efficiency and costs, and study the effects of making small modifications to the materials composition on its field response. The materials proposed here have the potential to evolve in a new class of energy storage and related technology within the next 10 years. Additionally, we will computationally optimize surface deposition processes and identify reactants, substituents, catalysts, and precursors for thin film deposition of materials, including dielectrics and semiconductors for electrode and barrier applications. This in itself will be a significant part of the theoretical and practical R&D work that will be carried out.
Scott McIndoe
Johanne Penafiel
Seastar Chemicals Inc
Chemistry
Advanced manufacturing
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.