Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Mitacs brings innovation to more people in more places across Canada and around the world.
Learn MoreWe work closely with businesses, researchers, and governments to create new pathways to innovation.
Learn MoreNo matter the size of your budget or scope of your research, Mitacs can help you turn ideas into impact.
Learn MoreThe Mitacs Entrepreneur Awards and the Mitacs Awards celebrate inspiring entrepreneurs and innovators who are galvanizing cutting-edge research across Canada.
Learn MoreDiscover the people, the ideas, the projects, and the partnerships that are making news, and creating meaningful impact across the Canadian innovation ecosystem.
Learn More
The ability to make safety-related decisions and to demonstrate compliance with regulatory or safety limits is of great importance in the nuclear industry. For example, we may be interested to assess whether a component (such as the pressure tube which carries fuel) has undergone physical changes that have exceeded its allowable limits (e.g., the pressure tube has expanded in the radial direction due to irradiation effects). The problem relies on the development of models that involve parameters describing such components and to use the models to predict and assess whether the parameter has become non-compliant. These predictive models are built using (imperfect) experimental data or complex computational codes. Thus, these physical parameters are considered as random variables that are subject to uncertainties (e.g., stochastic and epistemic) that affect our ability to make safety-related decisions. The objective of this project will be to investigate the development of methods and tools required to demonstrate the statistical basis for reaching decisions that are consistent with the 95/95 industry standard.
The development of advanced mathematical and statistical applications are used in supporting and enhancing AMEC NSS’s wide range of services in the areas of thermal hydraulics analysis, reactor physics analysis and operational support. The products from AMEC NSS are directly related to supporting and ensuring the safe operation of the Nuclear Generations in Ontario (e.g., Ontario Power Generation, Bruce Power).
Dr. Fred Hoppe
Dan Quach
AMEC Nuclear Safety Solutions
Statistics / Actuarial sciences
Energy
McMaster University
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.