Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Penetration testing is a key security tactic, where defenders thinks like an attacker to predict the latter’s actions and develop effective defense. However, for large-scale cyber-physical infrastructures like the smart grid, traditional penetration tests on individual devices or networks are insufficient to exhaust all potential exploits or to reveal infrastructure-level vulnerabilities invisible to the local system. The project aims to close the gap by developing collaborative autonomous agents that can inspect a large-scale infrastructure to identify critical vulnerabilities that would be otherwise invisible to the operators and defenders. To this end, the project will develop innovative deep reinforcement learning agents that will automatically conduct penetration tests in complex dynamic environments and adaptively update their strategies to identify the most impactful exploits. The project will deliver a systematic methodology that enables proactive search for critical vulnerabilities in 5G-connected smart critical infrastructures and promote early defense actions to mitigate the potential risks.
Jun Yan
Yuanliang Li
Ericsson Canada
Engineering - other
Information and communications technologies
Concordia University
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.