Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
The ability for an autonomous robot to create its own map based on onboard sensors and simultaneously, localize itself within this map is know as Simultaneous Localization and Mapping (SLAM). Although the theory behind SLAM has been well developed much work still needs to be done in realizing SLAM solutions that meet situation-specific real-world requirements. This is because sensors and actuators onboard a robot are always corrupted by noise. In particular, Unmanned Aerial Vehicles (UAVs), which travel in 3D, face additional difficulties due to the nonlinearities associated with rotation. Furthermore, indoor autonomous navigation is particularly challenging without a reliable inertial measurement for pose correction. The focus of this research project is not only to develop a robust and accurate 3D SLAM method to be used online by UAVs but to also achieve this indoors. This project will not only advance the field of autonomous indoor navigation but will also help ARA Robotique to be competitive in the UAV market.
James Forbes
Duowen Qian
ARA Robotique
Engineering - mechanical
Aerospace and defense
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.