Embedded Computers for Next-Generation DNA Sequencing

In 2014 a handheld DNA measurement device, the “MinION”, was commercialized. It is 100X smaller by volume and 6X faster and 20X less expensive than the next smallest DNA measurement device on the market. But its measurements are of a lower quality, about 90% of measured DNA is accurately ‘detected’ compared to 99.9% for leading […]

Read More
Biosensing JFET platform with printed graphene gate and customizable functionalization

The goal of this research project is to create a novel type of biosensor by combining two complimentary microfabrication techniques. First, a silicon chip containing JFET transistors with an open gate will be fabricated using traditional microfabrication techniques that are highly reliable and give good performance. Second, a graphene layer will be inkjet printed onto […]

Read More
Novel Portable Sensor to Reveal “Hidden” COVID-19 Infection

In Canada, as of April 21, only 569,878 people (~1.5% of the population) have been tested, with more than 38,413 positive COVID-19 cases identified; yet most people, including the asymptomatic COVID-19 cases, are not eligible for testing. Given that as many as 45% of all COVID-19 cases lack the known symptoms, or so-called asymptomatic cases, […]

Read More
Developing an interfacing platform technology for silicon-micromachined JFET biosensors

Biosensors are can detect a variety of molecules in a rapid and highly sensitive manner. A new biosensing technology was developed to allow scientists to customize the biomolecular target they wanted to detect, called an open-gated silicon junction field effect transistor (JFET). However, this technology lacks user friendly packaging needed accommodate its use in diverse […]

Read More
Stochastic Electrodynamics Simulations using the Xanadu Quantum Cloud

The proposed project investigates an approach to solve difficult physics problems, which are too computationally intensive for standard computers, using Xanadu’s near-term quantum computers. The goal of the project is to create a simulation tool that harnesses the exponential increase in efficiency offered by quantum computers to simulate the movement of particles and the subsequent […]

Read More
Characterization of NanoSOI NEMS electrostatic actuators

   A minituarized bio sensor employing a nanoelectromechanical resonator fabricated using a nanodimension silicon on insulator technology (NanoSOI) will be modeled and characterized. The NanoSOI technology has been developed by university researchers in collaboration with CMC Microsystems (Ontario) and Applied Nanotools (Alberta). The approach allows for very thin resonators with high resolution. The device under […]

Read More