A study on soil-pipe interaction: effects of slope grade

Transmission pipelines are the most popular and widely used medium to transport hydrocarbons (e.g., oil and gas) over long distances. Pipelines might pass through various geological and topographic conditions and therefore, pipeline routing is a critical component for successful design and regulatory approval. Due to the environmental and safety concerns or constraints imposed by the […]

Read More
Reliability evaluation of strain-based design for pipelines using probabilistic demand/capacity models

Ground movement can impose excessive deformation violating pertinent pipeline limit states. Currently, the integrity assessment of pipelines subjected to soil movement is generally performed by analyzing the stresses and/or strains in pipelines using various engineering techniques, including finite element analysis (FEA). However, given the wide variability of the pipe and soil engineering properties, using deterministic […]

Read More
Uplift pipe-soil interaction under inclined ground surface

It is crucial to understand soil-pipeline interaction to be able to design buried pipes against Geohazards. Soil-pipe interaction in the level ground is well established, and the current design practice is based on the assumption that a pipe is installed on a flat ground surface. In reality, however, pipelines often cross natural slopes and sometimes […]

Read More
Evaluation of the effects of pipe-soil interaction on the stress based design of buried pipelines using advanced numerical modeling

Thermal stress analysis of the buried pipeline is an integral part of pipeline design and integrity analysis. Pipeline design code (e.g. CSA Z662) provides guidance on the thermal stress analysis of restrained and unrestrained pipe sections. However, a buried pipeline bend is more likely to be partially restrained, as the pipe is free to expand […]

Read More
Reliability evaluation of strain-based design for pipelines using probabilistic demand/capacity models. – Year two

Ground movement can impose excessive deformation violating pertinent pipeline limit states. Currently, the integrity assessment of pipelines subjected to soil movement is generally performed by analyzing the stresses and/or strains in pipelines using various engineering techniques, including finite element analysis (FEA). However, given the wide variability of the pipe and soil engineering properties, using deterministic […]

Read More