Related projects
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
This project aims to provide Canadian petroleum companies a comprehensive big-data-analytics tool that concludes the essential controlling parameters which enable successful experimental and numerical studies on CO2-based solvent injection processes in post-CHOPS reservoirs. The proposed database includes relevant experimental research work that expand through multiple experimentation scales, as well as relevant numerical research work that cover from pore network simulation, Darcy-scale reservoir simulation, CFD simulation etc. From experimental database, relevance between physical controlling parameters and recovery performances will be investigated. This enables the selection of the optimum operating schemes in oil field development. From numerical database, the most frequently tuned parameters in Darcy-scale reservoir simulations which facilitate successful history matching can be extracted so as to narrow down the parameters’ adjustment range and thus enhance the efficiency of field-scale simulation and production prediction. Meanwhile, foamy oil stability enhancement, residual oil remobilization, and high-permeability wormhole blockage will be investigated by a state-of-the-art microfluidics laboratory, and such findings will be added into the big data analytics tool for deeper and continuous training and validation. Altogether, flow optimizations for wormhole regions of post-CHOPS reservoirs will be realized.
Farshid Torabi
Aria Rahimbakhsh
Petroleum Technology Research Centre
Engineering - petrochemical
University of Regina
Accelerate
Discover more projects across a range of sectors and discipline — from AI to cleantech to social innovation.
Find the perfect opportunity to put your academic skills and knowledge into practice!
Find ProjectsThe strong support from governments across Canada, international partners, universities, colleges, companies, and community organizations has enabled Mitacs to focus on the core idea that talent and partnerships power innovation — and innovation creates a better future.