Lattice Boltzmann modeling of moving boundaries

The mechanisms of sound production in single-reed woodwind instruments and human voices are not yet fully understood. Numerical simulations provide a feasible way to model and better characterize their sound production systems. However, there remains a problem in simulating the movement of vibrating reeds or vocal folds (i.e. a moving boundary), especially when the channel between the reed and mouthpiece or the two vocal folds gets very narrow or completely closes. In this project, we will make use of Palabos, an open source computational fluid dynamics (CFD) solver based on the lattice Boltzmann method (LBM), for 3D aeroacoustic studies. The performances of different moving boundary schemes will be compared and implemented in Palabos. A simple canonical problem involving the flow between two movable elastic plates will be used to verify the implemented moving boundary system. Then the 3D model of a moving reed and mouthpiece system will be built. If time allows, applications to vocal-fold simulations will also be explored.

Faculty Supervisor:

Gary Scavone


Song Wang






McGill University



Current openings

Find the perfect opportunity to put your academic skills and knowledge into practice!

Find Projects