Dynamic Deep Generative Graph Models for Financial Forecasting

Borealis AI has access to a huge amount of financial data related to the stock market and is interested in leveraging recent developments in machine learning to better understand this data. Some potential questions emerging from this data are: (1) Given the closing price of a stock in the recent months, can we predict the […]

Read More
Novel Corrective and Training Procedures for Neural Network Compliance

In AI safety, compliance ensures that a model adheres to operational specifications at runtime to avoid adverse events for the end user. This proposal looks at obtaining model compliance in two ways: (i) applying corrective measures to a non-compliant Machine Learning (ML) model and (ii) ensuring compliance throughout the model’s training process. We aim to […]

Read More
Characterizing and Improving the Robustness of Convolutional Neural Networks

Convolutional neural networks (CNNs) are expressive function approximators that play an important role in solving modern computer vision tasks, such as object recognition, and even summarizing images in natural language. Given their broad utility, CNNs have already been deployed in performance-critical systems, such as autonomous vehicles. Unfortunately, these models are vulnerable to subtle perturbations of […]

Read More
Generalization in Deep Learning

In recent years, deep learning has led to unprecedented advances in a wide range of applications including natural language processing, reinforcement learning, and speech recognition. Despite the abundance of empirical evidence highlighting the success of neural networks, the theoretical properties of deep learning remain poorly understood and have been a subject of active investigation. One […]

Read More
Interactive Reinforcement Learning Speedup with Confidence-based Transfer Learning

Reinforcement learning (RL) is a type of machine learning that focuses on allowing a physical or virtual agent to complete sequential decision-making tasks, such as video games. It has had many successes, but can be slow in practice, requiring large amounts of data. This project aims to speed up such learning problems by leveraging information […]

Read More
Policy Optimization in Parameter Space

Model-free Reinforcement Learning (RL) has recently demonstrated its great potential in solving difficult intelligent tasks. However, developing a successful RL model requires an extensive model tuning and tremendous training samples. Theoretical analysis of these RL methods, more specifically policy optimization methods, only stay in a simple setting where the learning happens in the policy space. […]

Read More
Machine learning approaches for event prediction, relation modeling, and inference

Machine learning approaches are transforming fields such as finance, healthcare, electronic commerce, social networks, and natural disaster forecasting. We propose collaborative research that develops novel methods and applications of machine learning techniques for event prediction, modeling relations between entities, and inference techniques that can impact these domains. In the context of event prediction, we will […]

Read More
Uncertainty Modeling and Quantification in Neural Network Image Denoisers

Image denoising is a fundamental process in most of computer vision systems, imaging systems, and photography productions. Recently, with the power of deep neural networks, image denoising has been pushed towards new boundaries. However, neural network image denoisers are constrained by the accuracy of the noise model used to train them. Training on a poor […]

Read More
Optimization of group equivariant convolutional networks

The explosion of popularity of deep learning owes a lot to the success of convolutional neural networks, widely used in diverse fields including computer vision and natural language processing. Recently, the group equivariant convolutional neural network (G-CNN) was introduced, where equivariance of symmetries inherent in the data set is built in the architecture of the […]

Read More
3d density estimation using normalizing flows and its application to 3d reconstruction in cryo-EM

Generative models enable the researchers to address multiple problems spanning from noise removal to generating novel samples with properties of the domain. Generative models are commonly studied for images and in this project the idea will be expanded to 3D structures or volumes. Single-particle cryo-electron microscopy (cryo-EM) is a technique to estimate accurate 3D structures […]

Read More
Non-convex learning with stochastic algorithms

In recent years, deep learning has led to unprecedented advances in a wide range of applications including natural language processing, reinforcement learning, and speech recognition. Despite the abundance of empirical evidence highlighting the success of neural networks, the theoretical properties of deep learning remain poorly understood and have been a subject of active investigation. One […]

Read More